博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Norm(范数)
阅读量:6934 次
发布时间:2019-06-27

本文共 2301 字,大约阅读时间需要 7 分钟。

(from:wikipedia)

In ,  and related areas of, a norm is a  that assigns a strictly positivelength or size to all  in a , other than the  (which has zero length assigned to it). A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors (in addition to the zero vector).

A simple example is the 2-dimensional  R2 equipped with the . Elements in this vector space (e.g., (3, 7)) are usually drawn as arrows in a 2-dimensional starting at the origin (0, 0). The Euclidean norm assigns to each vector the length of its arrow. Because of this, the Euclidean norm is often known as the .

A vector space with a norm is called a . Similarly, a vector space with a seminorm is called a seminormed vector space.

Notation

The norm of a vector, , or  (its ) is usually noted using the "double vertical line", Unicode Ux2016 : ( ‖ ). For example, the norm of a vector v is usually denoted ‖v‖. Sometimes the vertical line, Unicode Ux007c ( | ), is used (e.g. |v|), but this latter notation is generally discouraged, because it is also used to denote the  of scalars and the  of matrices. The double vertical line should not be confused with the "parallel to" symbol, Unicode Ux2225 ( ∥ ). This is usually not a problem because ‖ is used in parenthesis-like fashion, whereas ∥ is used as an .

Definition

Given a  V over a  F of the , a norm on V is a  pV → R with the following properties:

For all a ∈ F and all uv ∈ V,

  1. p(av) = |ap(v), ( or positive scalability).
  2. p(u + v) ≤ p(u) + p(v) ( or ).
  3. If p(v) = 0 then v is the  (separates points).

A simple consequence of the first two axioms, positive homogeneity and the triangle inequality, is p(0) = 0 and thus

p(
v) ≥ 0 (
positivity).

seminorm is a norm with the 3rd property (separating points) removed.

Although every vector space is seminormed (e.g., with the trivial seminorm in the Examples section below), it may not be normed. Every vector space V with seminorm p(v) induces a normed space V/W, called the , where W is the subspace of V consisting of all vectors v in V with p(v) = 0. The induced norm on V/W is clearly well-defined and is given by:

p(
W + 
v) = 
p(
v).

A  is called normable (seminormable) if the of the space can be induced by a norm (seminorm).

转载于:https://www.cnblogs.com/kevinGaoblog/archive/2012/06/20/2556491.html

你可能感兴趣的文章
MapReduce漫谈
查看>>
.NET定时任务执行管理器开源组件–FluentScheduler
查看>>
[ZigBee] 14、Zigbee无线通信前奏——BasicRF 简单无线点对点传输协议
查看>>
【微信小程序】开发者工具下载安装及创建项目功能预览
查看>>
【shell学习笔记】curl命令总结
查看>>
《Go语言入门》如何在Windows下安装Go语言编程环境
查看>>
Power BI官方视频(4) Power BI Desktop 2017年首次更新先睹为快
查看>>
Python编程-Office操作-操作Excel(上)
查看>>
第 178 章 cvs - Concurrent Versions System
查看>>
Spring AOP从入门到放弃之自定义注解收集系统日志
查看>>
[数分提高]2014-2015-2第7教学周第2次课 (2015-04-16)
查看>>
【MOS】 Troubleshooting waits for enq: TX - allocate ITL entry(1472175.1)
查看>>
Python3.6学习笔记(二)
查看>>
由一条create语句的问题对比mysql和oracle中的date差别
查看>>
11g备库中碰到自己给自己埋的坑
查看>>
HDB3码:快速上手步骤实例
查看>>
Nim编码风格
查看>>
【中亦安图】Systemstate Dump分析经典案例(7)
查看>>
Java 泛型
查看>>
SAP to Unveil SAP HANA 2
查看>>